Graph each relation and find the domain and range. Then determine whether the relation is a function.

1.
$$\{(-4, -8), (-2, 2), (0, 5), (2, 3), (4, -9)\}$$

2.
$$y = 3x - 3$$

Find each value.

3.
$$f(3)$$
 if $f(x) = 7 - x^2$

4.
$$f(0)$$
 if $f(x) = x - 3x^2$

Graph each equation or inequality.

5.
$$y = \frac{3}{5}x - 4$$

7. $x = -4$

6.
$$4x - y = 2$$

7.
$$x = -4$$

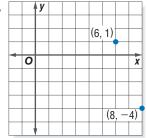
8.
$$y = 2x - 5$$

9.
$$f(x) = 3x - 1$$

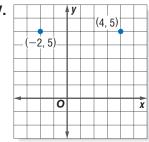
10.
$$f(x) = [3x] + 3$$

11.
$$g(x) = |x + 2|$$

12.
$$y \le 10$$


13.
$$-2x + 5 \le 3y$$

14.
$$y < 4|x - 1|$$


15.
$$h(x) = \begin{cases} x + 2 & \text{if } x < -2 \\ 2x - 1 & \text{if } x \ge -2 \end{cases}$$

Find the slope of the line that passes through each pair of points.

16.

17.

Graph the line passing through the given point with the given slope.

21.
$$(-2, 2), -\frac{1}{3}$$

21.
$$(-2, 2), -\frac{1}{3}$$
 22. $(3, -2)$, undefined

Write an equation in slope-intercept form for the line that satisfies each set of conditions.

23. slope
$$-5$$
, *y*-intercept 11

24.
$$x$$
-intercept 9, y -intercept -4

25. passes through
$$(-6, 15)$$
, parallel to the graph of $2x + 3y = 1$

26. passes through (5, 2), perpendicular to the graph of
$$x + 3y = 7$$

RECREATION For Exercises 27–29, use the table that shows the amount Americans spent on admission to spectator amusements in some recent years.

Year	Amount (billion \$)
2000	30.4
2001	32.2
2002	34.6
2003	35.6

Source: Bureau of Economic Analysis, U.S. Dept. of Commerce

- **27.** Draw a scatter plot. Let x represents the number of years since 2000.
- **28.** Write a prediction equation.
- **29.** Predict the amount that will be spent on recreation in 2015.
- **30. MULTIPLE CHOICE** What is the slope of a line parallel to y - 2 = 4(x + 1)?

$$A - 4$$

B
$$-\frac{1}{4}$$
C $\frac{1}{4}$

$$C \frac{1}{4}$$